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Scope of Effort

Sandia has many engineering applications.
A large fraction of newer apps are implicit in nature:
– Requires solution of many large nonlinear systems.
– Boils down to many sparse linear systems.

Linear system solves are large fraction of total time.
– Small as 30%.
– Large as 90+%.

Iterative solvers most commonly used.
Iterative solvers have small handful of important 
kernels.
We focus on performance issues for these kernels.
– Caveat:  These parts do not make the whole, but are a 

good chunk of it…



Problem Definition

A frequent requirement for scientific and 
engineering computing is to solve:

Ax = b
where A is a known large (sparse) matrix,

b is a known vector,
x is an unknown vector.

Goal: Find x.
Method: 
– Use Preconditioned Conjugate Gradient (PCG) method,
– Or one of many variants, e.g., Preconditioned GMRES.



Other Types of Problems

Nonlinear problems: f(u) = 0:
– Example: u(x)u(x)’ – sin(x)cos(x) = 0.

Eigenvalue problems: Ax = λx.

Many variations.
Sparse matrix multiplication: Basic op for all above.
Linear solver often basic component for all.
Iterative linear solvers important on parallel 
machines.

1 2 1 1 1
0 2 2 1 0 1
2 1 1 1 1

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦



Classic Prototype: The CG Method
i = 0; xi-1 = 0; ri-1 = b; A given by user;
while norm(ri) > tol {

i ++;
rtri-1 = ddot(ri-1, ri-1);
if (i=1) pi= ri-1;
else { 

bi = rtri-1/rtri-2; 
pi = ri-1 + bi*pi-1; 

}
Api = sparsemv(A,pi);
MApi = applyPrec(M,Api);
ai = rtri-1/ ddot(pi,MApi);
xi-1 = xi; xi = xi-1 + ai*pi; 
ri-1 = ri; ri = ri-1 - ai*MApi;

}
x = xi; // When norm(ri)<= tol, stop and set x to xi



Three Categories of Operations

Vector reductions and updates:
– Dot products (ddot).
– Norms (norm).
– AXPYs.
– Multitude of AXPY variations.

Sparse matrix-dense vector product (sparsemv).
– Compressed Row-oriented.
– Compressed Column oriented.

Preconditioner:
– Setup (one-time cost):

•Form coarse grid operator, or
•Compute incomplete factorization, or 
•Not much.

– Apply: Repeated proportional to sparse MV (applyPrec)



Vector Reductions and Updates
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Per Clocktick Memory Bandwith Requirement: 
– Assumes simultaneous mult/add (two FP ops/clk).
– Number of bytes needed per clk for optimal performance. 

Data window of solver is large:
– Little chance of temporal re-use, 
– Except multi-MB cache with small problems.

Bottom line: 
– Optimal vector kernel performance requires lots of bandwidth.
– Any improvements would please us.
– A lot is required to satisfy us.



Row‐based 
sparse matrix‐
vector multiply

Notes:
– Written in Fortran (still better than C).  Called from C++ wrappers.
– val and indx of length number of nonzeros in matrix.
– pntr, x and y of length matrix dimension.
– val, pntr, indx and y accessed sequentially and used once.
– x accessed indirectly, typically some effective cache use.
– Loop 20 is of average length 10s, regardless of problem size.

Optimal bandwidth: 3 reads & 1 write per clock
– Assuming simultaneous mult/add and no re-use of x values.
– Some x values will be re-used.
– Some x values will be read into cache and flushed without being used.

Sparse triangular solve also important:
– Nearly identical kernel.
– Needed for many preconditioners.

c.....do sequence of SPDOTs (sparse sdots)
jend = pntr(0)
do 10 j = 0, m-1

jbgn = jend
jend = pntr(j+1)
sum = 0.0
do 20 i = jbgn, jend-1

sum = sum + val(i) * x(indx(i))
20         continue

y(j) = sum
10      continue



Sparse MV Observations

x is the only array that benefits from cache:
– Some temporal re-use from row-to-row.
– Some spatial locality that acts as pre-fetching.

All other arrays are:
– Accessed sequentially.
– Used once and discarded.

Sparse column variant has similar properties:
– y is cacheable. All others not.

General observations: 
– A sophisticated cache memory system is mostly 

inappropriate for these kernels.
– Some kind of streamed access with cache bypass would 

be very attractive.



Preconditioners

Preconditioners tend to rely on kernels already 
mentioned:
– Sparse MV, vector updates, Triangular solves.

One additional kernel is sparse matrix triple product 
for multi-level preconditioners (called RAP):

AC = RAFP.
RAP is part of preconditioner setup: 
– Done once per solve.
– Still cost can be substantial.
– This kernel not well-studied (by us).
– Temporal re-use of data is higher than other kernels.
– Spatial re-use also, but probably offset by unused 

cache line entries.



Where We Are: One Data Point

Example: AMD Opteron (242)
– 1.6GHz, 1MB  L2 cache, 3100 BogoMIPS.
– Use DGEMM as practical achievable peak: 

•2760 MFLOPS (using Hammer-specific ATLAS BLAS)
– 10X effective bandwidth increase would satisfy us.

Kernel Asymptotic Peak 
MFLOPS

Percent of 
DGEMM Peak

ddot 400 14.5%
axpy 300 10.9%

sparsemv 250-310 9.0%-11.2%



Observations/Questions

Sophisticated cache memory systems are greatly 
underused by sparse iterative solvers:
– Very few kernels can benefit.
– Even when useful:

•Performance gains from temporal locality can be 
offset by unused cache line data.

•Partial cache line fill mode?
– Much of the time it gets in the way.

We could really use a high bandwidth streaming 
memory system.
– Much of our memory traffic is long-array unit-stride.
– Some kind of heavily interleaved memory system that 

could bypass cache?



Summary

Many Sandia applications are implicit.
Implicit apps need (sparse iterative) solvers.
Sparse iterative solvers:
– Use between 30-90+% of total application run-time.
– Cost is similar across major Sandia frameworks. (e.g., 

SIERRA, NEVADA, XYCE)
Sparse iterative solver kernels are a challenge:
– Most memory access is sequential one-time use.
– Indirect memory accesses can utilize cache, but…
– Re-use is offset at least somewhat by unused cache-

line entries.
Any increase in bandwidth is welcome.
Less aggressive spatial prefetch and streaming 
memory capabilities seem attractive.
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